

Technical Education and Analysis for Community Hauling and Anaerobic Digesters – TEACH AD

The goal of this program is to help communities and water resource recovery facilities in the Midwest region divert food waste from landfills by providing education and no-cost technical assistance to explore the increased adoption of anaerobic digestion and renewable energy biogas technologies.

- Educational Assistance
- Technical Assistance

Marcello Pibiri

Program Manager

Tel: (312) 355-3823

Email: mpibir2@uic.edu

Web: erc.uic.edu/bioenergy/teachad/

Webinar Speakers

Marcello Pibiri
Senior Research Engineer
UIC Energy Resources Center

Dana M. Kirk, Ph.D., P.E.

Associate Professor

Michigan State University

Thanks to our sponsor!

Q&A

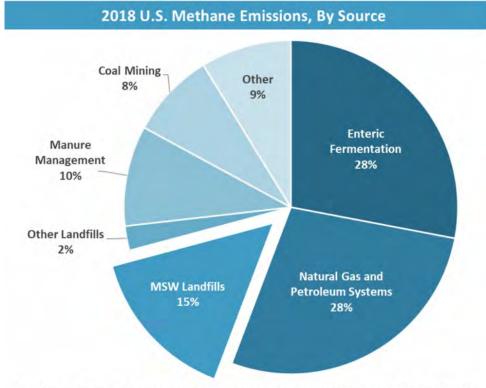
Submit your questions to the host using the Q&A box in the upper right-hand corner

Presentations

A recording of today's webinar will be posted on the TEACH AD webpage and you will be emailed a link by early next week

Survey

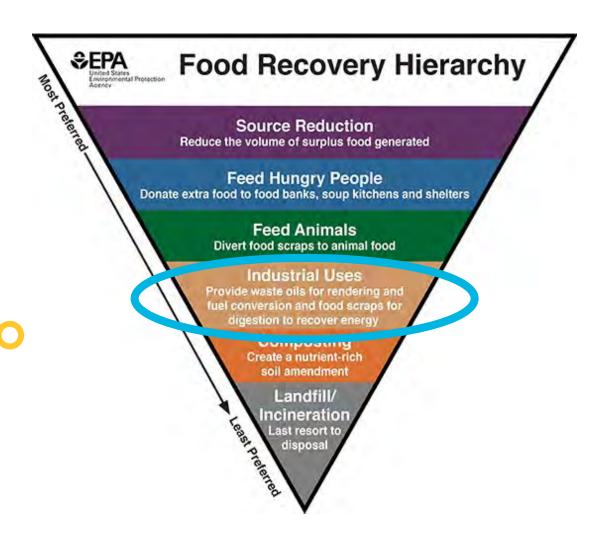
After the presentation you will receive a brief survey. We appreciate your feedback


Technical Issues

Contact Sam Rinaldi at: samr@uic.edu or 312-996-2554 for assistance

Importance of diverting food waste from landfills

- Municipal solid waste (MSW) landfills are the third-largest source of human-related methane emissions in the United States
- By reducing the amount of food waste landfilled, we reduce methane emissions



Note: All emission estimates from the Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2018. U.S. EPA. 2020.

Importance of diverting food waste from landfills

- One-third of all food produced for human consumption worldwide is lost or wasted
- Source Reduction
- Feed People, Not Landfills
- Industrial Uses
 - Anaerobic digestion

Overview of anaerobic digesters

Electricity

- Anaerobic digestion is the natural process in which microorganisms break down organic materials in the absence of oxygen.
- Two valuable outputs
 - Biogas
 - Digestate

Manure

(e.g., dairy, swine, beef, poultry)

Wastewater Biosolids
(e.g., municipal sewage sludge)

Feedstocks can be digested singularly or in combination (co-digestion)

Feedstock

Reg., boyslastics)

Biogas

Ce.g., energy crops, fats, oils, grease, crop residue, winery/brewery waste)

Horticulture Products

Feedstock
(e.g., boyslastics)

Digestate

Digestate

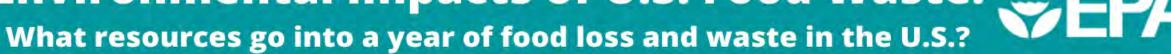
Ce.g., oil amendment, peat moss replacement, plant pots)

Organic Fertilizer

Sources: U.S. Environmental Protection Agency

Animal

Bedding


Other

Products

Crop

Irrigation

Environmental Impacts of U.S. Food Waste: SEPA

*excluding impacts of waste management, such as landfill methane emissions

Greenhouse gas emissions of more than 42 coal-fired power plants

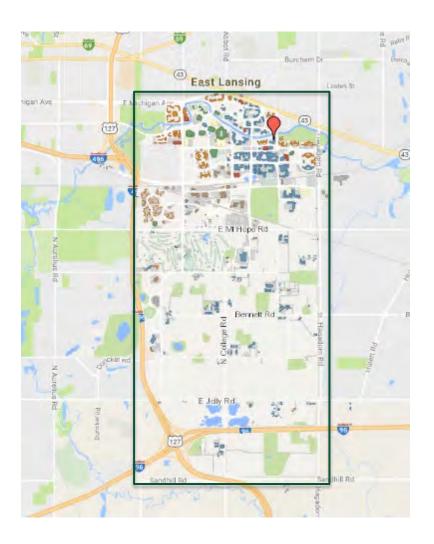
Enough water and energy to supply more than 50 million homes

The amount of fertilizer used in the U.S. to grow all plantbased foods for U.S. human consumption

An area of agricultural land equal to California and New York

Learn more: www.epa.gov/land-research/farm-kitchen-environmental-impacts-us-food-waste

Michigan State University South Campus Anaerobic Digester


9 years of life lessons

Dana Kirk, Ph.D., P.E., Louis Faivor, & Fahmi Dwilaksono Michigan State University
Biosystems and Agricultural Engineering Department
Anaerobic Digestion Research and Education Center

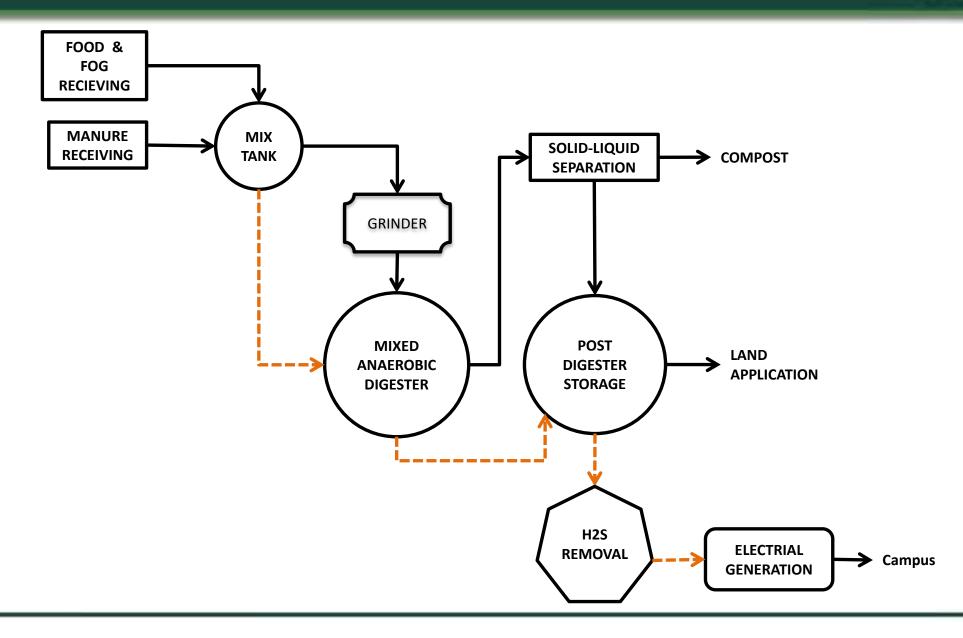
MSU by the Numbers

- Size: 5,200 acres
- Student body
 - 51,000 strong
 - All 50 states
 - 138 countries
 - 15% international
- Housing:
 - 28 residence halls
 - 2 apartment complexes
 - 14,000 residences

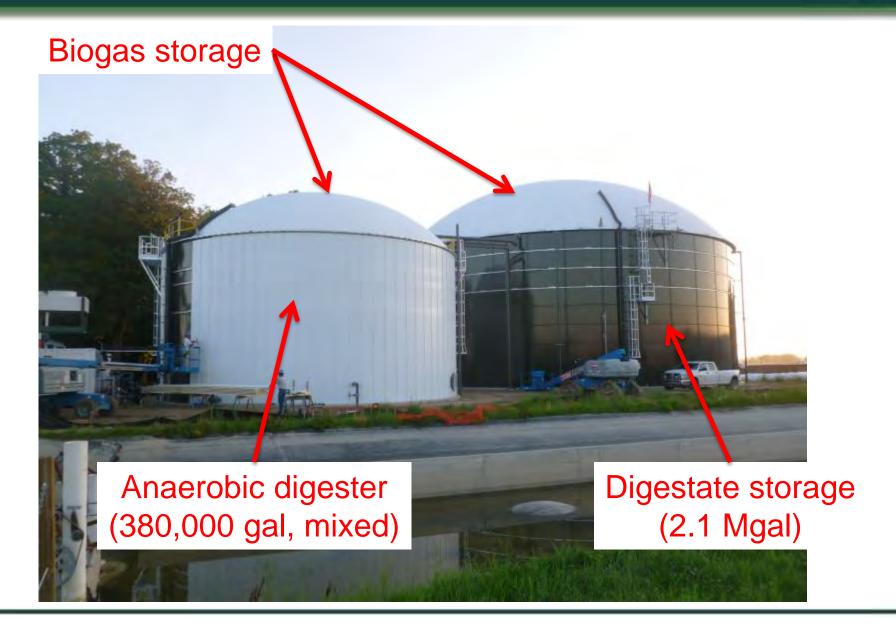
History of Campus Sustainability

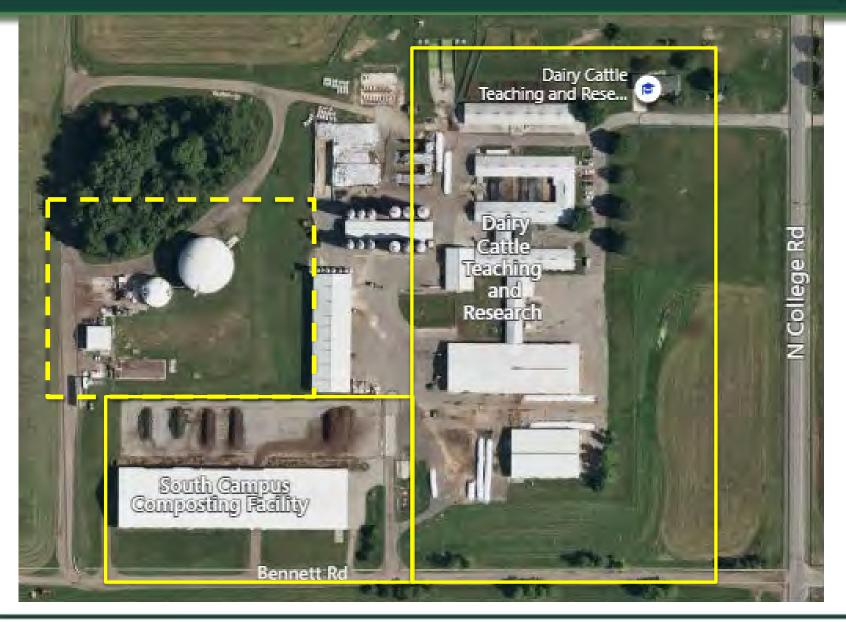
- Recycling (1988)
 - Construction of Recycling Center & Surplus Store (2009)
- Sustainability Plan (2011)
 - Significant recycling efforts, lacked options for organics
 - Campus food waste is approximately 1.80 lb/person/day (3x US average)
- Energy Transition Plan (2012)
 - South Campus Anaerobic Digester first project (2012)
 - 2015 renewable energy target of 15%
 - 2015 30% reduction in GHG emissions
 - 2015 end of the "coal era"
 - 2016 20 MW solar array planned
 - 2021 27MW natural gas power plant

South Campus Anaerobic Digester (SCAD)


MSU South Campus Anaerobic Digester

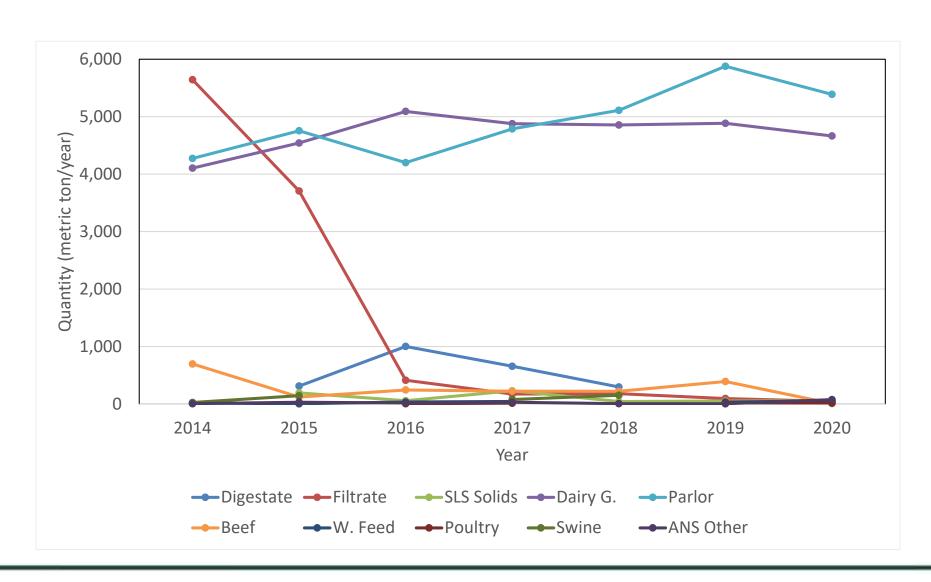
- Digester tank
 - 52' * 26' plus cover (380,000 gallons)
- Digestate storage tank
 - 101' * 42' plus cover (2.1 million gallons)
- CHP system
 - 380 kW electrical production & 400+ kW of thermal energy recovery
 - Electricity supplied to Campus
 - Thermal energy used to sustain the process, heat support building and separator area
- Digestate
 - Separated solids to compost
 - Separated liquid to storage and land application


Generalized Process Flow for SCAD



Anaerobic digester & digestate storage

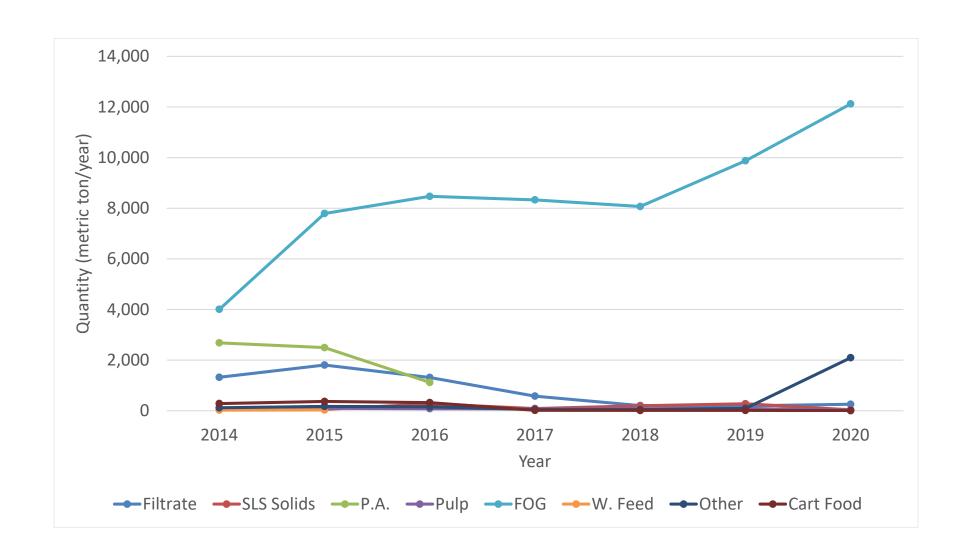
South Campus Anaerobic Digester Site


Key Sources of Organic Waste on Campus

- University Farms (manure)
 - Dairy, Swine, Beef, Sheep, Poultry, Equine
 - Pavilion
- Campus Living (food waste)
 - Culinary Services serves over 35,000 daily, 150,000+ weekly
 - 9 dining halls have all access from 7AM to 12AM
 - 24 coffee shops/convenience stores/retail foods
 - Hotel & conference centers (2x)
- Grease interceptors (FOG)
- Food processors & manufacturers

SCAD Manure Feedstocks

Year	Manure Pit (kg/d)							
				Waste			ANS	
	Dairy G.	Parlor*	Beef	Feed	Poultry	Swine	Other	
2014	11,463	25,466	6,354	4,069		12,645	179	
2015	12,647	27,034	4,784	1,069		4,537	741	
2016	13,844	21,659	3,914	3,426	568		441	
2017	13,307	20,612	2,394	1,451	1,071	25,682	919	
2018	13,205	23,907	2,878			17,275	688	
2019	13,287	21,993	3,432	1,847	1,935		1,562	
2020	12,678	21,269	3,053	3,159	1,950		3,022	
Average	12,919	23,134	3,830	2,503		15,035	1,079	
St. Dev	705	2,222	1,255	1,105		, 7,653	888	



Feedstock received in the SCAD food pit

SCAD Food Waste Feedstocks

Year	Food Pit (kg/d)						
				Waste		Cart	
	P.A.	Pulp	FOG	Feed	Other	Food	
2014	11,547	1,112	18,952	2,017	10,870	2,151	
2015	11,093	1,272	35,270	2,146	2,849	1,845	
2016	11,345	1,317	35,052		1,341	2,417	
2017		2,013	32,703		1,067	121	
2018		1,656	31,780	1,620	1,498	117	
2019		2,088	34,277		2,857	92	
2020		1,630	40,428		13,222	67	
Average	11,328	1,584	32,637	1,928	4,815	973	
St. Dev	186	346	6,143	224	4,663	1,020	

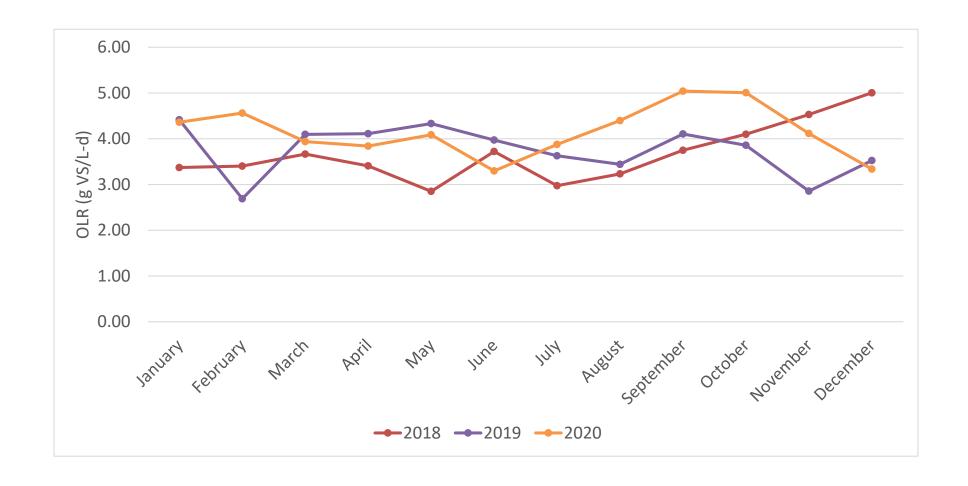
"Other" Food Waste

- Beverage processing waste
- Packaging material
- Slaughterhouse material
- Tortilla's
- Greenhouse byproducts
- Research byproducts
- Depackaging slurry

Food (Organic) Waste Planning

Challenges

- Packaging & contamination
- Debris
- Seasonality
- Cleaning agents
- Consistency
- Unloading
- Water content
- Pretreatment
 - Depacking
 - Grinding/maceration
 - Sterilization
 - Other



Comparison of Manure and Food

Year	Manure Pit (Metric ton/year)	Food Pit (Metric ton/year)	Total (Metric ton/year)	Food Pit (%)
2014	14,763	8,533	23,297	37%
2015	13,805	12,800	26,605	48%
2016	11,059	11,726	22,785	51%
2017	11,109	9,129	20,238	45%
2018	10,859	8,605	19,464	44%
2019	11,353	10,539	21,893	48%
2020	10,332	14,531	24,863	58%
Average	11,897	10,838	22,735	47%
St. Dev	1,683	2,294	2,499	7%

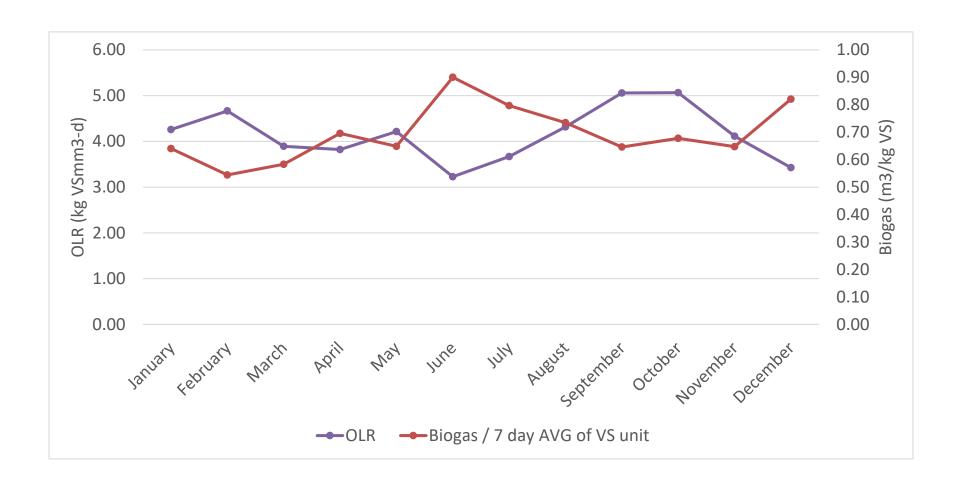
Sample of Feedstock Characterization

Feedstock	TS (mg/L)	VS (mg/L)	рН	
Parlor Manure	63,844	52,742	7.01	
Beef	462,152	393,620	8.64	
Dairy Gutter	162,268	142,940	8.23	
FOG	120,191	105,384	5.50	
Food Other	219,447	193,795	5.41	
Pineapple	127,389	114,749	3.91	
Pulp	275,459	262,105	4.36	

Combined heat & power unit (CHP)

Digester Contribution to Campus Sustainability

- Electrical energy 2,400 MW/yr
 - 10-20% of energy produce needed to operate system
- Thermal energy +3,000 MW/yr
 - <50% of the thermal energy needed to maintain temperature
- Greenhouse gas reduction (carbon credits)
- Landfill & wastewater diversion (>10,000 ton/yr)
- Recycling of carbon and nutrients


Annual Biogas & Energy Production

Year	HRT (days)	Temp (F)	рН	CH4 (%)	H2S (PPM)	CHP Daily total (SCFd)	Daily Electrical Power Generated (kWh)
2014	27	103	7.9	63%	360	82,303	4,880
2015	21	103	7.4	61%	433	106,810	6,431
2016	23	102	7.5	62%	667	136,744	7,407
2017	26	102	7.7	65%	421	103,138	6,994
2018	27	103	8.1	66%	387	125,635	7,342
2019	26	103	8.0	64%	520	121,743	6,632
2020	22	98	7.1	66%	652	131,387	7,518
Average	25	102	7.7	64%	491	115,394	6,743
St. Dev	2	2	0.3	2%	116	17,630	849

7 Days Average in 2020: Biogas vs OLR

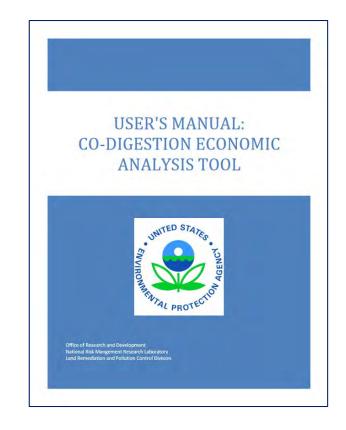
Takeaways from Our Experience

- Plan for feedstock change
 - Seasonality
 - Market driven
 - Competition
- "Clean" feedstock
- Budget for sufficient labor

TEACH AD – Educational Assistance

- In person workshops (2)
 - Onsite events
 - Tour of the site
 - April 2022: Kishwaukee Water Reclamation District for
 - Visit erc.uic.edu/bioenergy/teachad/in-person-workshops/
- Webinars (10)
 - Will cover different aspects of an anaerobic digestion project
 - Join us again in July for our 6th Webinar
 - Visit <u>erc.uic.edu/bioenergy/teachad/teach-ad-webinars/</u>
- Project profiles (8)
 - Will highlight successful AD projects
 - First two project profiles covering UW Oshkosh and Urbana Champaign Sanitary District
 - Visit https://erc.uic.edu/bioenergy/teachad/project-profiles/

TEACH AD – Technical Assistance


- Anaerobic Digestion Technical Assessments
 - Tailored technical assistance to each client
 - Initial economic and physical feasibility assessment for (co)digestion of organic wastes
 - Assess opportunity for using U.S. EPA's Co-Digestion Economic Analysis Tool (CoEAT)
 - Report presentation and follow up with next steps

INITIAL DATA REQUEST

MEETING WITH THE SITE

REPORT PRESENTATION

FOLLOW UP

TEACH AD - Contact

Marcello Pibiri

Program Manager

Tel: (312) 355-3823

Email: mpibir2@uic.edu

Web: erc.uic.edu/bioenergy/teachad/

Questions & Answers

Marcello Pibiri
Senior Research Engineer
UIC Energy Resources Center

Dana M. Kirk, Ph.D., P.E.

Associate Professor

Michigan State University

TEACH AD Webinar Series

Join us again in July for our 6th Webinar!

Thank You

Please fill out our survey.

A recording of today's webinar will be posted, and you will be emailed a link by early next week.

Thank You

